Контроллер, мачты, хвостовик, инвертор и аккумуляторную батарею.

Традиционно, ветровой механизм наделен тремя лопастями, зафиксированными на роторе. Когда ротор крутится, возникает трехфазный переменный ток, поступающий на контроллер, затем ток перерождается в стабильное напряжение и идет на аккумуляторную батарею.

Протекая через аккумуляторы, ток подпитывает их и эксплуатирует в качестве проводников электричества.

В дальнейшем, ток приходит на инвертор, достигает требуемых величин: переменный однофазный ток 220 В, 50 Гц. При скромном расходовании выработанного электричества предостаточного для пользования светом и электрическими приборами, нехватка тока компенсируется благодаря аккумуляторам.

Как рассчитать лопасти?

Вычислить диаметр ветряка для определенной мощности можно следующим образом:

  1. Окружность пропеллера ветрогенератора с определенной мощностью, малыми оборотами и силой ветра, при которых происходит подача нужного напряжения, числом лопастей внести в квадрат.
  2. Высчитать площадь данного квадрата.
  3. Разделить площадь получившегося квадрата на мощность конструкции в ватах.
  4. Перемножить результат с требуемой мощностью в ватах.
  5. Под этот результат нужно подбирать площадь квадрата, варьируя размеры квадрата до тех пор, пока размер квадрата не достигнет четырех.
  6. В этот квадрат вписать окружность пропеллера ветрогенератора.

После этого нетрудно будет узнать другие показатели, например, диаметр.

Расчет максимально приемлемой формы лопастей достаточно мудреный, кустарному мастеру сложно его выполнить, поэтому можно использовать готовые шаблоны, созданные узкими специалистами.

Шаблон лопасти из ПВХ трубы 160 мм в диаметре:

Шаблон лопасти из алюминия:

Можно попробовать самостоятельно определить показатели лопастей ветряного устройства.

Быстроходность ветряного колеса являет собой соотношение круговой скорости края лопасти и скорости ветра, ее можно вычислить по формуле:

На мощность ветряного двигателя оказывают влияние диаметр колеса, форма лопастей, расположение их относительно потока воздуха, скорости ветра.

Ее можно найти по формуле:

При использовании лопастей обтекаемой формы коэффициент использования ветра не выше 0,5. При слабо обтекаемых лопастях – 0,3.

Необходимые материалы и инструменты

Потребуются следующие материалы:

  • дерево либо фанера;
  • алюминий;
  • стекловолокно в листах;
  • трубы и комплектующие из ПВХ;
  • материалы, имеющиеся дома в гараже либо подсобных помещениях;

Необходимо запастись следующими инструментами:

  • маркер, можно использовать карандаш для черчения;
  • ножницы для резки металла;
  • лобзик;
  • ножовка;
  • бумага наждачная;

Вертикальный и горизонтальный ветрогенератор


Вертикальный ветрогенератор

Можно классифицировать по роторам:

  • ортогональный;
  • дарье;
  • савониуса;
  • геликойдный;
  • многолопастной с направляющим аппаратом;

Хороши тем, что нет нужды направлять их относительно ветра, они функционируют при любом направлении ветра. Из-за этого их не нужно оснащать приборами, улавливающими направление ветра.

Эти конструкции допустимо располагать на земле, они просты. Изготовить своими руками такую конструкцию значительно проще, нежели горизонтальную.

Слабым местом вертикальных ветрогенераторов считается их малая производительность, крайне низкий КПД, из-за чего сфера их использования ограничена.

Горизонтальные ветрогенераторы имеют ряд достоинств по сравнению с вертикальными. Они делятся на одно-, двух-, трех- и многолопастные.

Однолопастные конструкции самые скоростные, они крутятся в два раза быстрее трехлопастных при одинаковой силе ветра. КПД этих ветрогенераторов существенно выше, чем вертикальных.

Существенным недостатком горизонтально-осевой конструкций считается зависимость ротора от направления ветра, из-за чего на ветрогенератор необходимо устанавливать дополнительные приборы, улавливающие направление ветра.

Выбор вида лопастей

Лопасти преимущественно могут быть двух видов:

  • парусного типа;
  • крыльчатого профиля;

Можно соорудить плоские лопасти по типу «крыльев» ветряной мельницы, то есть, парусного типа. Выполнить их проще всего из самого разнообразного материала: фанеры, пластика, алюминия.

Этот метод имеет свои минусы. При кручении ветряка с лопастями, выполненными по принципу паруса, не участвуют аэродинамические силы, кручение обеспечивает лишь мощность давления ветрового потока.

Производительность этого прибора минимальна, в энергию трансформируется не более 10% силы потока ветра. При незначительном ветре колесо будет пребывать в статичном положении, а тем более не станет производить энергию для употребления в быту.

Более приемлемой будет конструкция, являющая собой ветряное колесо с лопастями крыльчатого профиля. В ней наружная и внутренняя поверхности лопастей обладают различными площадями, что позволяет достигать несоответствия давления воздуха на противоположные поверхности крыла. Аэродинамическая сила значительно увеличивает коэффициент использования ветряного прибора.

Подбор материала

Лопасти для ветряного устройства можно выполнить из любого более или менее подходящего материала, например:

Из трубы ПВХ


Соорудить лопасти из этого материала, наверное, проще всего. Трубы ПВХ можно найти в каждом строительном магазине. Выбирать трубы следует те, которые разработаны для канализации с напором либо газопровода. В противном случае поток воздуха при сильном ветре может искорежить лопасти и повредить их о мачту генератора.

Лопасти ветрогенератора претерпевают серьезные нагрузки от центробежной силы, причем, чем длиннее лопасти, тем сильнее нагрузки.

Край лопасти двухлопастного колеса домашнего ветрогенератора вращается со скоростью сотни метров в секунду, такова скорость вылетающей из пистолета пули. Такая скорость может привести к разрыву труб ПВХ. Особенно опасно это тем, что разлетающиеся осколки труб могут убить либо серьезно ранить людей.

Выйти из положения можно укоротив по максимуму лопасти и увеличив их число. Многолопастное ветряное колесо легче балансировать, оно меньше шумит. Немаловажное значение имеет толщина стенок труб. К примеру, для ветряного колеса с шестью лопастями из ПВХ трубы, составляющего в диаметре два метра, их толщина не должна быть менее 4 миллиметров. Для расчета конструкции лопастей домашнему умельцу можно воспользоваться готовыми таблицами и шаблонами.

Шаблон следует смастерить из бумаги, приложить к трубе и обвести. Это следует сделать столько раз, сколько лопастей будет у ветрогенератора. При помощи лобзика трубу необходимо рассечь по меткам – лопасти практически готовы. Края труб шлифуются, углы и концы закругляются для того, чтобы ветряк выглядел симпатично и поменьше шумел.

Из стали следует смастерить диск с шестью полосами, который будет играть роль конструкции, объединяющей лопасти и фиксирующей колесо к турбине.

Габариты и форма соединительной конструкции должны соответствовать типу генератора и постоянного тока, который будет задействован в . Сталь необходимо выбрать такой толщины, чтобы она не деформировалась под ударами ветра.

Из алюминия


По сравнению с лопастями из ПВХ труб алюминиевые более выносливы и на изгиб, и на разрыв. Недостаток их заключается в большом весе, что требует принятия мер к обеспечению устойчивости всего сооружения в целом. Кроме того, следует максимально тщательно балансировать колесо.

Рассмотрим особенности исполнения лопастей из алюминия для шестилопастного ветряного колеса.

По шаблону следует выполнить лекало из фанеры. Уже по лекалу из листа алюминия высечь заготовки лопастей в количестве шести штук. Будущая лопасть прокатывается в желоб глубиной в 10 миллиметров, при этом ось прокрутки должна образовать с долевой осью заготовки угол в 10 градусов. Эти манипуляции наделят лопасти приемлемыми аэродинамическими параметрами. К внутренней стороне лопасти крепится втулка с резьбой.

Соединительный механизм ветряного колеса с лопастями из алюминия в отличие от колеса с лопастями из труб ПВХ имеет на диске не полоски, а шпильки, представляющие собой куски стального прута с резьбой, подходящей к резьбе втулок.

Из стекловолокна

Лопасти из собранной из стекловолокна специфической стеклоткани являются наиболее безупречными, учитывая их аэродинамические параметры, прочность, вес. Соорудить эти лопасти трудней всего, поскольку нужно уметь обрабатывать дерево и стеклоткань.

Мы рассмотрим выполнение лопастей из стекловолокна для колеса диаметром два метра.

Наиболее скрупулезно следует подойти к выполнению матрицы из дерева. Она вытачивается из брусьев по готовому шаблону и служит моделью лопасти. Закончив трудиться над матрицей, можно начинать мастерить лопасти, которые будут состоять из двух частей.

Матрицу для начала надо обработать воском, одну из ее сторон покрыть эпоксидной смолой, на ней расстелить стеклоткань. На нее снова нанести эпоксидную смолу, и снова слой стеклоткани. Количество слоев может быть три или четыре.

Затем нужно прямо на матрице получившуюся слойку держать около суток до полного высыхания. Вот и готова одна часть лопасти. С другой стороны матрицы выполняется та же последовательность действий.

Готовые части лопастей следует соединить при помощи эпоксидной смолы. Внутрь можно поместить деревянную пробку, зафиксировать ее клеем, это позволит закрепить лопасти к ступице колеса. В пробку следует внедрить втулку с резьбой. Соединительный узел станет ступицей так же как и в предыдущих примерах.

Балансировка ветряного колеса

Когда лопасти будут выполнены, нужно укомплектовать ветряное колесо и произвести его балансировку. Делать это следует в закрытом строении большой площади при условии полного безветрия, поскольку колебания колеса на ветру способны исказить результаты балансировки.

Балансировку колеса необходимо выполнять так:

  1. Укрепить колесо на такой высоте, чтобы оно могло беспрепятственно двигаться. Плоскость соединительного механизма должна быть идеально параллельна вертикальному подвесу.
  2. Добиться полной статичности колеса и отпустить. Оно не должно шевелиться. Затем прокрутить колесо на угол, равный отношению 360/число лопастей, остановить, отпустить, снова прокрутить, так наблюдать некоторое время.
  3. Испытания следует проводить до полного прокручивания колеса вокруг своей оси. Когда отпущенное либо остановленное колесо продолжает качаться, его часть, тяготеющая книзу излишне тяжела. Необходимо конец одной из лопастей подточить.

Кроме того, следует выяснить, насколько гармонично лопасти лежат в плоскости вращения колеса. Колесо необходимо остановить. На расстоянии около двух миллиметров от каждого края одной из лопастей укрепить две планки, которые не будут препятствовать вращению. При прокручивании колеса лопасти не должны цепляться за планки.

Техническое обслуживание

Для длительного безаварийного функционирования ветрогенератора следует проводить такие мероприятия:

  1. Через десять или четырнадцать дней от начала работы , ветряной двигатель следует обследовать, особенно крепления. Делать это лучше всего в безветренную погоду.
  2. Два раза в год промазывать подшипники поворотного механизма и генератора.
  3. При подозрениях на нарушение балансировки колеса , которое может выражаться в вибрации лопастей при кручении по ветру, необходимо выполнить балансировку.
  4. Ежегодно осматривать щетки токоприемника.
  5. По мере необходимости , покрывать красящими составами металлические части ветрогенератора.

Сделать лопасти для ветряного двигателя вполне по силам домашнему умельцу, нужно только все просчитать, продумать, и тогда дома появится реальная альтернатива электросетям. При выборе мощности самодельного устройства, нужно обязательно помнить, что его максимальная мощность не должна превышать 1000 или 1500 Ватт. Если этой мощности не хватает, стоит подумать о покупке промышленного агрегата.

Изобретение относится к авиационной технике, а именно к проектированию и летным испытаниям воздушных винтов, установленных на летательных аппаратах (ЛА). Способ включает в себя неравномерное расположение лопастей по диску, устанавливаемых попарно с сохранением симметрии относительно ортогональных осей винта, комбинирование типов винтов с четным числом лопастей от четырех и более, определение математической модели расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов между осями соседних пар лопастей 1 , суммирование векторов нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , ОХ 1 , OZ 1 вращающейся системы координат с началом в центре втулки винта ЛА, затем проектирование полученных векторов нагрузок на неподвижные оси координат ЛА О н Х н и O н Z н, выполнение гармонического анализа проекций векторов нагрузок на продольную О н Х н и поперечную O н Z н оси координат, построение зависимости амплитуд этих гармонических составляющих от углов 1 и выбор из них значений расчетных углов, соответствующих минимальному уровню гармоник переменных нагрузок. Достигается увеличение ресурса конструкции ЛА по условиям усталостной прочности путем снижения нагрузок и вибраций. 1 з.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2385262

Изобретение относится к авиационной технике, а именно к проектированию и летным испытаниям воздушных винтов, устанавливаемых на летательных аппаратах (ЛА), преимущественно на вертолетах, самолетах и автожирах, и может быть использовано для увеличения ресурса конструкции ЛА по условиям усталостной прочности (валов несущих, рулевых, тянущих и толкающих винтов, главных, рулевых и промежуточных редукторов, подредукторных рам, фюзеляжей, хвостовых и килевых балок).

Уровень техники

Известно, что силы и моменты, создаваемые каждой из лопастей воздушного винта, обуславливаются аэродинамическими нагрузками и возникающими при ее колебаниях инерционными силами и моментами. Нагрузки с лопастей передаются на втулку винта и складываются на ней по определенным правилам, а затем, трансформируясь по другим правилам, передаются на фюзеляж (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984. с.30).

Для облегчения понимания дальнейшего изложения сущности изобретения рассмотрим сначала процесс сложения и трансформации гармоник на классическом воздушном винте, т.е. на винте с равномерным расположением лопастей по диску (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984. с.30). При выводе правил суммирования обычно принимается, что лопасти идентичны по своим аэродинамическим, массовым и жесткостным характеристикам. При этом условии законы изменения нагрузок на отдельных лопастях будут отличаться друг от друга только сдвигом по времени (фазе). Амплитуды любой из составляющих гармоник для всех лопастей будут одинаковыми. Для того чтобы найти равнодействующую сил на втулке, удобно рассмотреть суммирование одноименных гармоник нагрузок, создаваемых на каждой из лопастей. При этом необходимо учесть направление действия нагрузок на разных лопастях. Нагрузку, приходящую с каждой лопасти, имеющей номер i, можно разложить по трем направлениям: по направлению оси винта - это векторы тяги и крутящего момента , а два других расположены в плоскости вращения перпендикулярно оси горизонтального шарнира и параллельно ей (перпендикулярно оси лопасти) . Векторы и от разных лопастей параллельны друг другу, а векторы и соседних лопастей повернуты относительно друг друга на угол , где K л - число лопастей винта.

Для гармоник нагрузок, векторы которых параллельны оси вращения винта, применяется первое правило суммирования (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984, с.30). Согласно этому правилу гармоники с номерами и кратными числу лопастей:

и амплитудами нагрузок A n различных лопастей складываются и дают на втулке равнодействующую, имеющую амплитуду и ту же частоту. Они без изменения амплитуд и частот гармонических составляющих сил передаются на фюзеляж. Такие гармоники называются проходными. Гармоники с номерами, некратными числу лопастей, т.е. не удовлетворяющие условию (1) ни при каком целом m и, на втулке взаимно уравновешиваются и не передаются на фюзеляж. Эти гармоники называются непроходными.

Для гармоник сил на втулке, находящихся в плоскости вращения винта и повернутых относительно друг друга на угол , равный углу между лопастями, применяется второе правило суммирования (Михеев Р.А. Прочность вертолетов. М.: Машиностроение, 1984. с.37).

В соответствии с этим правилом проходными являются гармоники с номерами, на единицу отличающимися от номеров, кратных числу лопастей:

и первая гармоника, которая соответствует значению m=0. Амплитуда этой нагрузки равна амплитуде гармоники одной лопасти, умноженной на половину числа лопастей. Это правило справедливо для винтов с числом лопастей К л 3.

При передаче этих гармоник в невращающуюся систему координат O н X н Z н гармоники с номерами mК л ±1 трансформируются в лопастные гармоники

Однако эти правила относятся к классическим винтам, т.е. к таким винтам, у которых лопасти расположены по диску равномерно, что не позволяет конструктору при проектировании воздушных винтов управлять нагрузками и вибрациями, передающимися с винтов на конструкцию.

Известны рулевые винты Х-образного типа (схема «ножницы»), установленные на вертолетах АН-64А «Апач» (США), Ми-28 и Ми-38 (Россия).

В описании вертолета «Апач», составленном по материалам открытой иностранной печати (Боевой вертолет Макдоннел-Дуглас АН-64А «Апач» (по материалам открытой иностранной печати). ОНТИ ЦАГИ, 1989. с.23), приводятся сведения о том, что использование неравномерного расположения между парами лопастей (острый угол Х=55°) привело к уменьшению уровня четвертой гармоники составляющей шума.

В работе (Рождественский М.Г., Самохин В.Ф. Аэродинамические и акустические особенности винта схемы «ножницы». Аэродинамика. Статья в Трудах шестого Форума РосВО, 2004. с.I-103 I-117) показано, что компоновка винта схемы «ножницы» имеет преимущества по сравнению с характеристиками винта с ортогональным расположением лопастей: увеличение тяги достигает 7%, а максимальное увеличение коэффициента полезного действия составляет 10%.

Рулевой винт типа «фенестрон» с десятью лопастями, неравномерно расположенными по диску, реализован на вертолетах ЕС130 и ЕС135 фирмы Eurocopter (Журнал «Вертолетная индустрия», декабрь 2007, с.25). По данным фирмы на вертолете с винтом, выполненным по такой концепции, удалось существенно снизить уровень шума, потребную мощность и повысить аэродинамическое качество.

Известен патент РФ № 1826421 Преобразуемый несущий винт преимущественно комбинированного ЛА, содержащий втулку винта, четыре лопасти с симметричным профилем, установленные под углом 90° для полета по-вертолетному, а для самолетного режима винт в плане становится Х-образным. В самолетном режиме консоли устанавливаются с меньшим углом стреловидности по отношению к набегающему потоку (угол стреловидности Х=30°), что позволяет улучшить несущие свойства системы «несущий винт-крыло».

Однако в данном патенте вопросы снижения уровней нагрузок и вибраций, действующих на конструкцию комбинированного ЛА, не рассматривались.

Технический результат, на достижение которого направлено изобретение, заключается в увеличении ресурса конструкции ЛА по условиям усталостной прочности путем снижения нагрузок и вибраций.

Для достижения названного технического результата в предлагаемом способе, включающем неравномерное расположение лопастей по диску, установленных попарно, с сохранением симметрии относительно ортогональных осей винта, согласно изобретению, комбинируют типы винтов с четным числом лопастей от четырех и более следующим образом:

10 - лопастной винт комбинируют из двух Х-образных и одного 2-хлопастного винтов.

Определяют математическую модель расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов пар лопастей 1 . Суммируют векторы нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , OX 1 , OZ 1 , вращающейся системы координат с началом в центре втулки винта ЛА, затем проектируют полученные векторы нагрузок на неподвижные оси координат ЛА O н X н, и O н Z н. Выполняют гармонический анализ проекций векторов нагрузок на продольную O н X н и поперечную O н Z н оси координат, строят зависимости амплитуд этих гармонических составляющих от углов 1 , из них выбирают значения углов, соответствующих минимальному уровню гармоник переменных нагрузок.

Для 10-лопастного винта определяют аналитически методом последовательных приближений сочетания углов 1 , 2 , при которых нагрузки и вибрации, действующие на конструкцию ЛА, равны нулю, где 1 - угол между осями соседних пар лопастей, а 2 - угол между осями смежных пар лопастей. Выбранные углы используют при компоновке винта.

Предлагаемый способ поясняется следующими фигурами:

На фиг.1 показана схема многолопастного винта с неравномерным расположением лопастей по диску, где

1 - вращающиеся оси координат винта OX 1 и OZ 1 ;

2 - оси лопастей № 1, 2, К л;

3 - втулка винта;

4 - оси О н Х н и О н Z н в неподвижной системе координат O н Х н Z н;

5 - углы между соседними лопастями 1 ;

7 - вертикальная ось координат О н Y н;

8 - азимутальное положение оси лопасти № 1.

На фиг.2 показаны зависимости амплитуд проекций нагрузок 10 на неподвижные оси координат от углов 1 5 для четвертой и двенадцатой гармоник, где

9 - амплитуды проекций векторов нагрузок на вертикальную ось координат O н Y н 7;

11 - амплитуды проекций векторов нагрузок на неподвижные оси координат 4: продольная О н Z н, поперечная O н Z н.

На фиг.3 приведены сочетания между углами 1 и 2 , соответствующие нулевому уровню амплитуды четвертой гармоники, где

5 - углы между осями соседних лопастей 1 ;

6 - углы между осями смежных лопастей 2 ;

12 - точка, соответствующая нулевой четвертой гармонике, полученная расчетом;

13 - интерполяционный полином, соответствующий нулевому уровню нагрузок по четвертой гармонике.

16 - частота колебаний, Гц.

Способ осуществляется следующим образом

В предлагаемом способе, включающем неравномерное расположение лопастей по диску, установленных попарно с сохранением симметрии относительно ортогональных осей винта, комбинируют типы винтов с четным числом лопастей от четырех и более следующим образом:

4-лопастной (Х-образный) винт образуют из двух пар лопастей;

6-лопастной винт компонуют из Х-образного и двухлопастного винтов;

8-лопастные винты формируют: из двух 4-лопастных классических винтов; из Х-образного и 4-лопастного классического винтов; из двух Х-образных винтов;

10-лопастной винт комбинируют из двух Х-образных и одного 2-хлопастного винтов.

Определяют математическую модель расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов пар лопастей 1 . Суммируют векторы нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , OX 1 , OZ 1 вращающейся системы координат с началом в центре втулки винта ЛА, затем проектируют полученные векторы нагрузок на неподвижные оси координат ЛА O н X н и О н Z н. Выполняют гармонический анализ проекций векторов нагрузок на продольную О н Х н и поперечную O н Z н оси координат, строят зависимости амплитуд этих гармонических составляющих от углов 1 , из них выбирают значения углов, соответствующих минимальному уровню гармоник переменных нагрузок.

Для 10-лопастного винта определяют аналитически методом последовательных приближений сочетания углов 1 , 2 , при которых нагрузки и вибрации, действующие на конструкцию ЛА, равны нулю, где 1 - угол между осями соседних пар лопастей, a 2 - угол между осями смежных пар лопастей. Выбранные углы используют при компоновке винта.

Таким образом, полученные значения углов 1 и 2 , соответствующие минимальным и нулевым гармоническим составляющим, позволяют существенно снизить уровень нагрузок и вибраций, действующих на конструкцию ЛА.

Сущность изобретения поясняется схемой многолопастного винта, приведенной на фиг.1. Лопасти нумеруются (например, на вертолете) по мере прохождения их над хвостовой балкой (отрицательное направление оси O н X н 4 в неподвижной системе координат). При выборе вращающихся осей координат ОХ 1 Z 1 ось OX 1 1 направляется по оси лопасти № 1. Ось OZ 1 1 должна быть перпендикулярна оси OX 1 и опережать ее.

В неподвижной системе координат продольная ось O н X н 4 направлена вперед, а поперечная ось O н Z н 4 - вправо для несущего винта и вверх для рулевого винта.

Оси координат во вращающейся OY 1 и в невращающейся O н Y н 7 системах координат направляются по оси вращения в направлении тяги винта (эти оси совпадают).

Рассмотрим изменение n-гармоник переменных нагрузок для каждой лопасти i в зависимости от азимутального положения 8 оси лопасти № 1 и углов между лопастями 1 5 и 2 6 (обозначим последние два угла как j):

Находим равнодействующую сил винта , приходящих на втулку винта от каждой лопасти, для каждой из гармоник n, количество лопастей К л - произвольное и четное:

В результате сложения одноименных гармоник получаются зависимости равнодействующих нагрузок на периоде вращения винта при разных углах между парами лопастей 1 5 и 2 6.

Путем аналитических выкладок и численных расчетов можно показать, что проходными гармониками нагрузок, векторы которых параллельны оси вращения винта, является ряд гармоник с четными номерами, т.е. n=2, 4, 6, ... N. Это правило авторы изобретения назвали «третьим правилом суммирования гармоник». Максимальный номер четной гармоники N устанавливается из опыта летных испытаний. Таким же способом можно доказать, что все нечетные гармоники рассматриваемых нагрузок являются непроходными.

Определим значения углов j , при которых амплитуды гармоник будут минимальными. Для решения задачи минимизации нагрузок целесообразно считать, что лопасти винта идентичны по своим аэродинамическим, массовым и жесткостным характеристикам, а амплитуды разных гармоник на всех лопастях равны единичной нагрузке, т.е. .

По аналогии с (1) запишем выражения для гармоник в плоскости OX 1 Z 1 каждой лопасти i на периоде вращения винта в зависимости от азимутального положения оси лопасти № 1 с учетом углов между осями пар лопастей j 5 и 6:

Проекции векторов нагрузок на вращающиеся оси координат будут равны и .

Начало координат О (например, для вертолета) расположим в центре втулки винта. Азимут вращающейся оси OX 1 , т.е. 8, будем отсчитывать от отрицательного направления оси O н X н 4. Тогда проекции гармоник нагрузок на неподвижные оси координат будут равны:

Рассмотрим четыре варианта исполнения комбинированных винтов: 4-лопастной, 6-лопастной, 8-лопастной (три варианта) и 10-лопастной. Углы между лопастями на первых трех винтах можно выразить с помощью одного угла 1 5, а на 10-лопастном винте - двумя углами: между соседними лопастями 1 5 и смежными 2 6, т.е. следующими после соседних пар лопастей по вращению и против вращения винта, что наглядно иллюстрируется на фиг.1.

Приравняв сумму гармонических составляющих (2) и (3) для каждой из гармоник нулю, находим углы j , соответствующие нулевым значениям амплитуд:

;

;

.

Выполним гармонический анализ функций и при разных значениях углов j .

Авторами предлагаемого изобретения проведен расчет зависимостей амплитуд проекций нагрузок на три указанные выше оси координат от угла 1 для 4-, 6- и 8-лопастного винтов. При этом рассмотрены все четные гармоники в диапазоне n=2 32. Для 10-лопастного винта рассчитаны сочетания соседних 1 и смежных 2 углов, при которых четные гармоники в том же диапазоне номеров n=2 32 равны нулю.

Результаты расчетов поясняются графиками на фиг.2 и 3, на которых изображены:

фиг.2 - зависимости амплитуд проекций нагрузок 10 на вертикальную АПрY н 9, продольную АПрX н 10 и поперечную AПрZ н 10 оси координат, 4-лопастной винт, гармоники четыре и двенадцать.

Из приведенных данных на фиг.2 следует, что максимальные значения амплитуд проекций нагрузок равны: на вертикальную ось - сумме сил отдельных лопастей (в нашем случае - числу лопастей винта), а амплитуды проекций на продольную и поперечную оси равны половине числа лопастей. На графиках фиг.2 видно, что большие диапазоны занимают углы 1 , при которых амплитуды нагрузок меньше, чем на классических винтах.

Сочетания углов между соседними 1 5 и смежными 2 6 лопастями на 10-лопастном воздушном винте приведены на фиг.3 (четвертая гармоника). Видно, что зависимости между углами 1 и 2 имеют эллипсовидный характер. Точки 12 на графиках получены расчетным путем. При анализе результатов расчета следует иметь в виду, что указанные зависимости представляют из себя кривые 13, проведенные по точкам. Число сочетаний углов 1 и 2 является бесконечно большим и оно увеличивается по мере увеличения номера гармоники n. Таким образом, при проектировании 10-лопастного винта имеются большие возможности для снижения или обнуления целого ряда гармонических составляющих переменных нагрузок.

На фиг.4 приведен амплитудный спектр вибраций 14 на шпангоуте № 2 килевой балки вертолета Ми-38 ОП-1, где

15 - амплитуды виброперегрузок (в единицах g) на килевой балке (КБ), шпангоут 2 (шп 2);

16 - частота колебаний, Гц.

На вертолете Ми-38 установлен 4-лопастной Х-образный рулевой винт с углом между осями лопастей 1 =38°.

Из приведенной зависимости следует подтверждение основных положений предлагаемого изобретения. Так, в амплитудном спектре виброперегрузок, определяемых нагрузками на Х-образном рулевом винте, отмечается вторая гармоника, которая отсутствует на классическом 4-лопастном винте. Четвертая гармоника амплитудного спектра (фиг.4), которая является проходной лопастной на классическом винте, в данном случае значительна по величине. Предлагаемым авторами способом она могла бы быть снижена практически до нуля. Для этого необходимо, чтобы углы между осями лопастей были равны

Практическое значение предлагаемого способа заключается в том, что он позволяет создавать воздушные винты, у которых любая гармоника или целый ряд гармоник нагрузок и вибраций, передающихся с воздушного винта на конструкцию летательного аппарата, может быть уменьшена до нуля или сведена до минимума. В частности, в вертолетостроении актуальной является проблема обеспечения усталостной прочности валов несущих и рулевых винтов, главных, хвостовых и промежуточных редукторов, подредукторных рам, средних и хвостовых частей фюзеляжа, килевых (концевых) балок.

Использование изобретения позволит уменьшить уровень нагруженности и вибраций в указанных частях конструкции и существенно повысить их ресурс по условиям усталостной прочности.

Известно (см. Богданов Ю.С. и др. Конструкция вертолетов. М.: Машиностроение, 1990. с.70), что даже небольшое изменение амплитуды переменных нагрузок (напряжений 1 , в которых амплитуды нагрузок значительно меньше, чем на классических винтах. Поэтому имеет существенное значение не только обнуление гармоник, но и их уменьшение по сравнению с нагрузками на классических винтах.

При летных испытаниях вертолетов Ми-28 и Ми-38, имеющих Х-образные рулевые винты, выявлено, что в записях вибраций, передающихся на хвостовую часть фюзеляжа, отмечены четные гармоники, начиная со второй. Предложенный способ легко объясняет появление таких «непривычных» для специалистов гармоник. Поэтому предложенное изобретение может быть использовано также при анализе результатов летных прочностных испытаний вертолетов, самолетов и автожиров с воздушными винтами, выполненными по предлагаемой концепции.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ уменьшения нагрузок и вибраций на летательных аппаратах, имеющих многолопастные воздушные винты с четным числом лопастей, включающий неравномерное расположение лопастей по диску, устанавливаемых попарно с сохранением симметрии относительно ортогональных осей винта, отличающийся тем, что комбинируют типы винтов с четным числом лопастей от четырех и более, определяют математическую модель расчета гармонических составляющих векторов переменных нагрузок для каждой лопасти в зависимости от углов между осями соседних пар лопастей 1 , суммируют векторы нагрузок от каждой лопасти на втулке винта по трем осям OY 1 , ОХ 1 , OZ 1 вращающейся системы координат с началом в центре втулки винта летательного аппарата, а затем проектируют полученные векторы нагрузок на неподвижные оси координат летательного аппарата О н Х н и O н Z н, выполняют гармонический анализ проекций векторов нагрузок на продольную О н Х н и поперечную O н Z н оси координат, строят зависимости амплитуд этих гармонических составляющие от углов 1 , из них выбирают значения расчетных углов, соответствующие минимальному уровню гармоник переменных нагрузок, а для 10-лопастного винта определяют аналитически методом последовательных приближений сочетания углов 2 - угол между осями смежных пар лопастей, производят компоновку винтов на летательном аппарате в соответствии с выбранными расчетными углами между осями пар лопастей.

2. Способ уменьшения нагрузок и вибраций на летательном аппарате, имеющих многолопастные воздушные винты с четным числом лопастей по п.1, отличающийся тем, что комбинируют типы винтов с четным числом лопастей от четырех и более следующим образом: 4-лопастной (Х-образный) винт образуют из двух пар лопастей; 6-лопастной винт компонуют из Х-образного и двухлопастного винтов; 8-лопастные винты формируют из двух 4-лопастных классических винтов из Х-образного и 4-лопастного классического винтов или из двух Х-образных; 10-лопастной винт комбинируют из двух Х-образных и одного 2-лопастного винтов.

Л опасти для вертолета как резина для автомобиля. Мягкие лопасти сглаживают реакции вертолета, делают его более ленивым. Жесткие, напротив, заставляют вертолет реагировать на управление без задержек. Тяжелые лопасти замедляют реакции, легкие обостряют. Лопасти с высоким профилем отбирают больше энергии, а с низким склонны к срыву потока, когда подъемная сила резко снижается. Выбирая лопасти, стоит учесть их параметры и выбрать те, что подойдут вашему стилю и опыту больше всего.

Когда мы выбираем лопасти, то в первую очередь смотрим на их длину, поскольку длина лопасти зависит от класса вертолета. Чаще под длиной подразумевается расстояние от крепежного отверстия лопасти до ее концевой части. Некоторые немногочисленные производители указывают полную длину лопасти от комля до концевой части. К счастью таких случаев мало.
От длины зависит подъемная сила, и сопротивление вращения которые создает лопасть. Длинная лопасть способна создать большую подъемную силу, но при этом отнимает больше энергии на вращение. С длинными лопастями модель стабильнее при висении и обладает большей "летучестью", т.е. способна на более крупные маневры и лучше выполняет авторотацию.

Хорда (ширина лопасти)

Важный параметр лопасти, который чаще всего не указывают вовсе, и остается только измерить хорду самостоятельно. Чем шире лопасть, тем больше подъемную силу она может создать при тех же углах атаки и тем резче вертолет при управлении по циклическому шагу. Широкая лопасть имеет более высокое сопротивление вращения и потому сильнее нагружает силовую установку. При использовании лопастей с широкой хордой важна точная работа шагом, иначе можно легко "задушить" мотор. Наибольший разброс ширины встречается у лопастей для вертолетов 50-ого класса и выше.


Длина и хорда.

Материал

Следующее, на что нужно обратить внимание, это материал, из которго сделаны лопасти. Сегодня наиболее распространенные материалы, из которых изготавливают лопасти вертолетов это карбон и стеклопластик. Деревянные лопасти постепенно сходят со сцены, так как не обладают достаточной прочностью и сильно ограничивают вертолет в летных возможностях. К тому же деревянные лопасти склонны к изменению формы, что приводит к постоянному появлению «бабочки». Пожалуй, наименьшее, на что сегодня стоит соглашаться, это стеклопластиковые лопасти. Они не страдают изменением формы, обладают достаточной жесткостью для выполнения легкого 3D и отлично подойдут начинающим вертолетчикам. Пилоты со стажем непременно выберут карбоновые лопасти как наиболее жесткие, позволяющие вертолету выполнять экстремальные фигуры высшего пилотажа и наделяют вертолет молниеносной реакцией на управление.

Важный параметр - вес лопасти. При прочих равных более тяжелая лопасть сделает вертолет более стабильным, снизит скорость управления по циклическому шагу. Тяжелая лопасть добавит стабильности и размеренности и запасет больше энергии при выполнении авторотации, что сделает маневр более комфортным. Если вы стремитесь к 3D полетам, выбирайте более легкие лопасти.

Форма лопасти

Прямая, трапециевидная. Чаще встречается прямая форма, трапециевидная скорее относится к экзотике. Последняя позволяет снизить сопротивление вращения ценой снижения отдачи.


Форма лопасти.

Симметричный - высота профиля одинаковая сверху и снизу лопасти. Лопасти с симметричным профилем способны создавать подъемную силу только при ненулевом шаге. Такие лопасти наиболее распространены среди современных вертолетов и используются на всех моделях, выполняющих 3D пилотаж.
Полусимметричный – снизу лопасти профиль имеет меньшую высоту. Такие лопасти способны создавать подъемную силу даже при нулевых углах атаки, т.е. Создают подъемную силу аналогично тому, как это делает крыло самолета. Такие лопасти используются редко, как правило, только на больших копийных вертолетах.

Высота профиля

Чем выше профиль, тем лучше он сопротивляется срыву потока, но тем выше его сопротивление. Деревянные лопасти обычно имеют более высокий профиль, но лишь для того, что бы обладать достаточной прочностью.


Форма профиля и его высота.

Толщина комля

Толщина комля напрямую связана с размером цапф вашего вертолета. Если комель толще, то лопасть не влезет в цапфу, если наоборот – будет болтаться. Обычно в пределах одного класса вертолетов толщина комля стандартна, тем не менее, при покупке лопастей убедитесь, что они подходят к вашему вертолету. Некоторые производители комплектуют лопасти шайбами-проставками, которые можно использовать, если посадочное место цапфы больше толщины комля. Такие шайбы надо устанавливать парами сверху и снизу комля, что бы лопасть была закреплена по центру цапфы.


Толщина комля.

Диаметр крепежного отверстия

Диаметр отверстия должен совпадать с диаметром крепежного винта цапфы. Как и толщина комля, этот параметр стандартный, тем не менее, стоит его проверить перед покупкой лопастей.

Положение крепежного отверстия относительно наступающей кромки.

Определяет то, насколько наступающая кромка лопасти выступает вперед цапфы. Смещенное назад отверстие приводит к тому, что при вращении лопасть отстает от цапфы, что делает такие лопасти более стабильными. Напротив, смещение отверстия к наступающей кромке заставляет лопасть при вращении выдвигаться вперед цапфы, и такое положение делает лопасть менее стабильной.


Положение крепежного отверстия.

Форма концевой части лопасти.

Форма концевой части влияет на сопротивление вращения ротора. Различают прямую, закругленную и скошенную форму. Более прямая форма создает подъемную силу по всей длине лопасть, но и имеет наибольшее сопротивление вращения.


Форма концевой части лопасти.

Продольный центр тяжести.

Положение центра тяжести в продольном направлении. Чем ближе центр тяжести к концевой части лопасти, тем лопасть более стабильна и лучше выполняет авторотацию. Наоборот, смещение центра тяжести к комлю делает лопасть более маневренной, но страдает накопление лопастью энергии при авторотации.

Поперечный центр тяжести.

Положение центра тяжесть поперек лопасти, от наступающей кромки к отступающей. Обычно стараются размещать центр тяжести так, чтобы при вращении лопасть не отставала от цапфы и не выступала вперед. Лопасть с сильно смещенным назад центром тяжести выступает при вращении вперед цапфы и, следовательно, более динамична.


Продольный и поперечный центр тяжести.

Динамическая балансировка: выступающая/отступающая лопасть.

Параметр зависит от положения крепежного отверстия, веса, положения поперечного и продольного центров тяжести. В целом, если лопасть при вращении выступает вперед цапфы, то такая лопасть более маневренная и больше подходит для 3D полетов, но отбирает больше энергии и делает вертолет недостаточно стабильным. Если напротив лопасть при вращении отстает от цапфы, то такая лопасть более стабильная. Если лопасть не отстает и не выступает, то это нейтральная лопасть. Такая лопасть наиболее универсальная и одинаково хорошо подходит как для маневров висения, так и для 3D полетов.


Динамическая балансировка.

Ночные лопасти.

Ночные лопасти со встроенными светодиодами и встроенным, либо съемным аккумулятором служат для комплектации вертолета для ночных полетов. Совместно с лопастями используются различные способы подсветки корпуса вертолета.

Лопасти с защитным стержнем.

Стержень не дает лопасти разлетаться на отдельные части в случае падения. Очень полезный элемент безопасности, который к сожалению присутствует только в дорогих лопастях известных производителей. Случается, что обломки лопастей, не оборудованных таким стержнем, разлетаются на расстояние до 10 метров от места падения и могут привести к травме.

Центробежный вентилятор — устройство механического типа, которое способно работать с воздушными или газовыми потоками, имеющими низкий уровень увеличения давления. Крутящаяся крыльчатка обеспечивает движение воздушных масс. Система работы заключается в том, что кинетическая энергия увеличивает давление потока, который и оказывает противодействие всем воздуховодам и заслонкам.

Центробежный вентилятор намного мощнее осевого, при этом имеет экономных расход электроэнергии.

Данное устройство позволяет изменить направление воздушной массы с уклоном в 90 градусов. При этом во время работы вентиляторы не создают много шума, а за счет своей надежности их диапазон рабочих условий достаточно широк.

Некоторые особенности

Хотелось бы обратить внимание, что принцип действия центробежного вентилятора построен таким образом, что он качает постоянный объем воздуха, а не массу, что позволяет фиксировать скорость расхода воздуха. Кроме того, такие модели намного экономичней, чем осевые аналоги, а конструкцию при этом имеют проще.

Схема элементов центробежного вентилятора: 1 – ступица, 2 – основной диск, 3 – рабочие лопатки, 4 – передний диск, 5 – лопастная решетка, 6 – корпус, 7 – шкив, 8 – подшипники, 9 – станина, 10, 11 – фланцы.

Автопромышленность использует данные вентиляторы, чтобы охлаждать двигатели внутреннего сгорания, которые отдают «в пользование» свою энергию такому аппарату. Также это вентиляционное устройство применяется для перемещения газовых смесей и материалов в вентиляционных системах.

Могут использоваться как одно из составляющих систем отопления или охлаждения. Такая техника применима и с целью очистки и фильтрации промышленных систем.

Для обеспечения нужного уровня давления и расхода используется обычно целая серия вентиляторов. Конечно, центробежные модели имеют более высокую мощность, но при этом остаются экономичными (всего лишь 12% затрат от электричества).

Устройство центробежного вентилятора состоит из крыльчатки, которая оснащена несколькими шеренгами лопастей (ребер). В центре расположен вал, который проходит через весь корпус. Воздушные массы попадают с края, где находятся лопасти, далее за счет конструкции происходит их поворот на 90 градусов, а затем благодаря центробежной силе они разгоняются еще больше.

Вернуться к оглавлению

Типы приводных механизмов

Во многом на работу вентилятора, а именно на вращение лопастей, влияет тип привода. На сегодняшний день их 3:

  1. Прямой. В данном случае крыльчатка напрямую соединена с валом двигателя. От скорости вращения мотора будет зависеть и скорость лопастей. В качестве недостатка этой модели выделяют следующие: если двигатель не имеет регулировки своей скорости, то и вентилятор будет работать в одном режиме. Но если учесть, что холодный воздух имеет более высокую плотность, то кондиционирование будет само по себе происходить быстрее.
  2. Ременный. В данном типе устройства имеются шкивы, которые расположены на валу двигателя и крыльчатки. Соотношение диаметров шкивов обоих элементов влияют на скорость работы лопастей.
  3. Регулируемый. Тут регулировка скорости происходит за счет наличия гидравлической или магнитной муфты. Ее месторасположение — промеж валов мотора и импеллера. Чтобы проще было осуществить этот процесс, такие центробежные вентиляторы имеют автоматизированные системы.

Вернуться к оглавлению

Составляющие центробежного вентилятора

Схема рабочих колес центробежных вентиляторов: а – барабанная, б – кольцевая, в, г – с коническими покрывающими дисками, д — однодисковые, е — бездисковые.

Как и любая другая техника, вентилятор будет исправно работать только при соответствующих элементах конструкции.

  1. Подшипники. Чаще всего данный тип устройства имеет маслонаполненные подшипники роликового типа скольжения. Отдельные модели могут обладать водяной системой охлаждения, которая чаще всего применяется в работе с горячими газами, что предотвращает перегрев подшипников.
  2. Лопасти и заслонки. Основная функция заслонок — управление газовыми потоками при входе и выходе. Отдельные модели центробежных эксгаустеров могут иметь их с обеих сторон или только с одной — входа или выхода. «Входящие» заслонки управляют количеством поступаемого газа или воздуха, а «выходящие» сопротивляются воздушному потоку, который управляет газом. Заслонки, что расположены на входе лопастей, способствуют уменьшению потребления электроэнергии.

Сами плицы находятся на втулке колеса центростремительного вентилятора. Есть три стандартных расположения лопастей:

  • лопасти загнуты вперед;
  • лопасти загнуты назад;
  • лопасти прямые.

В первом варианте лопасти имеют лезвия с направлением по движению колеса. Такие вентиляторы «не любят» твердых примесей в эрлифтных потоках. Основное их назначение — большой поток с низким давлением.

Второй вариант оснащен искривленными лезвиями против движения колеса. Таким образом достигается аэродинамический швеллер и относительная экономичность конструкции. Такой способ применяется в работе с потоками газовой консистенции низкого и умеренного уровня насыщения жесткими компонентами. В качестве дополнения имеют покрытие от повреждений. Очень удобно то, что такой центробежный вентилятор имеет широкий диапазон регулировок скоростей. Они намного эффективней моделей с лопастями, изогнутыми вперед или прямыми, хотя последние и стоят дешевле.

Третий вариант имеет лопасти, которые расширяются сразу от втулки. Такие модели имеют минимальную чувствительность к оседанию твердых частиц на лопастях вентилятора, но при этом издают много шума во время эксплуатации. Также они имеют быстрый темп работы, низкие объемы и высокий уровень давления. Часто используют с целью аспирации, в пневматических системах для транспортировки материалов и в других схожих работах.

Вернуться к оглавлению

Типы центробежных вентиляторов

Есть определенные стандарты, по которым изготавливается данная техника. Следует выделить следующие типы:

    1. Аэродинамическое крыло. Такие модели имеют широкое применение в сфере непрерывных работ, где постоянно присутствуют высокие температуры, чаще всего это нагнетательные и вытяжные системы. Имея высокий показатель по производительности, они бесшумны.
    2. Обратно загнутые лопасти. Обладают высокой эффективностью. Конструкция этих вентиляторов препятствует накоплению пыли и мелких частиц на лопастях. Имеет достаточно прочную конструкцию, что позволяет применять их для областей с высоким угнетением.
    3. Ребра, изогнутые в обратную сторону. Рассчитаны для большой кубатуры воздушных масс с относительно низким уровнем давления.
    4. Радиальные лопасти. Достаточно прочны, могут обеспечить высокое давление, но со средним уровнем эффективности. Направляющие ротора имеют специальное покрытие, которое защищает их от эрозии. Кроме того, такие модели имеют достаточно компактные габариты.
    5. Ребра, загнутые вперед. Предназначены для тех случаев, когда предстоит работа с большими объемами воздушных масс и наблюдается высокое давление. Эти модели тоже имеют хорошую стойкость к эрозии. В отличие от моделей «заднего» типа такие агрегаты имеют меньшие размеры. Такой вид крыльчатки имеет самый большой расход объема.
    6. Гребное колесо. Данное устройство — открытое колесо без какого-либо корпуса или кожуха. Применим для помещений, где присутствует большая запыленность, но при этом, увы, такие устройства не обладают высокой эффективностью. Допустимо использование при высоких температурах.

Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).

Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.

Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.

При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.

Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:

Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.

При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.

Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.

Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего - стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.

Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.

К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора - нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части - к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.

Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5-6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.

При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.

Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.

Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.

Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.

Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.

Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.

Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти - 2 мм.

Предотвратить обледенение возможно двумя путями.

Первый путь - это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.

Второй путь - это оборудование лопастей противо-обледенительными устройствами.

Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может

быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.

Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.

Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.

Будущее покажет, какой из этих способов найдет себе более широкое применение.

Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.

Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.

Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.

Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади

Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05-0,08 (среднее значение 0,065).

Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9-12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.

Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.

Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.